Discrepancies of Point Sequences on the Sphere and Numerical Integration
نویسندگان
چکیده
where σ denotes the normalized surface measure on Sd and f is a continuous real valued function. As a general reference on Quasi-Monte Carlo methods we mention Niederreiter [22]. The problem of distributing points on the sphere is also related to constructive multivariate approximation, see Reimer [24]. For the recent literature on spherical problems concerned with approximation and numerical integration we refer to the forthcoming book [7].
منابع مشابه
Monte Carlo Method for Numerical Integration Based on Sobol's Sequences
An efficient Monte Carlo method for multidimensional integration is proposed and studied. The method is based on Sobol’s sequences. Each random point in s-dimensional domain of integration is generated in the following way. A Sobol’s vector of dimension s (ΛΠτ point) is considered as a centrum of a sphere with a radius ρ. Then a random point uniformly distributed on the sphere is taken and a ra...
متن کاملIntegration by Rbf over the Sphere
In this paper we consider numerical integration over the sphere by radial basis functions (RBF). After a brief introduction on RBF and spherical radial basis functions (SRBF), we show how to compute integrals of functions whose values are known at scattered data points. Numerical examples are given.
متن کاملThermo-elastic analysis of a functionally graded thick sphere by differential quadrature method
Thermo-elastic analysis of a functionally graded hollow sphere is carried out and numerical solutions of displacement, stress and thermal fields are obtained using the Polynomial differential quadrature (PDQ) method. Material properties are assumed to be graded in the radial direction according to a power law function, ho...
متن کاملSpatial statistics for lattice points on the sphere I: Individual results
We study the spatial distribution of point sets on the sphere obtained from the representation of a large integer as a sum of three integer squares. We examine several statistics of these point sets, such as the electrostatic potential, Ripley's function, the variance of the number of points in random spherical caps, and the covering radius. Some of the results are conditional on t...
متن کاملQMC designs: Optimal order Quasi Monte Carlo integration schemes on the sphere
We study equal weight numerical integration, or Quasi Monte Carlo (QMC) rules, for functions in a Sobolev space Hs(Sd) with smoothness parameter s > d/2 defined over the unit sphere Sd in Rd+1. Focusing on N-point configurations that achieve optimal order QMC error bounds (as is the case for efficient spherical designs), we are led to introduce the concept of QMC designs: these are sequences of...
متن کامل